Human Centered Design and Engineering Fall 2019 ME 170 Alex Pagano Senior Design Strategist apagano2@illinois.edu #### **Learning Objectives** At the end of this lecture you should be able to... - Define human centered design - Summarize why engineers should practice human centered design - Explain how human centered design fits into this course and beyond #### Wait isn't this a CAD class? Yeah, don't worry. You will be learning how to use CAD software to represent and develop your designs. #### Wait isn't this a CAD class? Yeah, don't worry. You will be learning how to use CAD software to represent and develop your **designs**. But what is the design? #### What is (Engineering) Design? #### **Engineering Design** | is | | is not | | |---|---------------|-------------------------------------|--| | 1. Relevant and pur | poseful 1. | Quick and easy
(straightforward) | | | 2. Process starting concept | from 2. | unrealistic | | | 3. Progressive and i4. Goal oriented | innovative 3. | finished | | #### → ABET Definition Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs. #### → ABET Definition Engineering design is the process of devising a system, component, or process to <u>meet desired needs</u>. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources <u>optimally</u> to meet these stated needs. | •Engineering Design — Engineering design is the process of devising a system, component, or process to meet desired needs and specifications within constraints. | |--| | is iterative/creative decision-making <u>process</u> in which the basic sciences, mathematics, and engineering sciences <u>are applied</u> to convert resources into solutions. | | Engineering design involves () for the purpose of obtaining a high-quality solution under the given circumstances: identifying opportunities developing requirements performing analysis and synthesis generating multiple solutions evaluating solutions against requirements considering risks making trade- offs | | •For illustrative purposes only, examples of possible constraints include accessibility, aesthetics, codes, constructability, cost, ergonomics, extensibility, functionality, interoperability, legal considerations, maintainability, manufacturability, marketability, policy, regulations, schedule, standards, sustainability, or usability. | #### Why Human Centered Design? *Example does not represent all cases #### **Class Project** Design a mechanical or electro-mechanical product to address unmet needs related to food on campus | HCD Lab | Design Space | Project milestone | |---------|--------------|------------------------| | Lab 1 | Understand | Initial Interview Plan | | Lab 2 | Synthesize | Identify Needs | | Lab 3 | Ideate | Early Concept | #### **Project Deliverables:** | 1) | Project Description | 6) | Assembly Drawings | |----|--------------------------------------|-----|---------------------------------------| | 2) | Concept Sketches - initial and final | 7) | Exploded Assembly Drawing and BOM | | 3) | Concept Selection process | 8) | Dimensioned Engineering Drawings | | 4) | Product Design Specification | 9) | Tolerance Analysis | | 5) | CAD Models | 10) | Materials and Manufacturing Estimates | #### Design Challenge I have an electric kettle that I use to heat water to make coffee in the morning, but it gets too hot. #### Design Challenge I have an electric kettle that I use to heat water to make coffee in the morning, but it gets too hot. Can you help me? #### Write down your thoughts. What's the goal? How do you define success? #### Design Challenge I have an electric kettle that I use to heat water to make coffee in the morning, but it gets too hot. Can you help me? #### What's the goal? (I want better coffee, more consistently) #### How do you define success? (You address my needs and I adopt your design) #### How can we achieve success? If success is defined by the adoption of the new design, it must be desirable, viable and feasible. Let's frame this design challenge using a "Point of view" statement. This is a handy tool which can define the scope of the project and inspire action. <u>'User</u> needs <u>unmet need</u> because <u>surprising insight</u>" #### Problem Statement/Scope The electric kettle needs to heat the water less. VS. Alex needs a way to make better coffee more consistently because his electric kettle overheats the water. LAB 1 #### What else do you need to know? Alex needs a way to make *better coffee* more consistently because <u>his electric kettle</u> overheats the water. #### What else do you need to know? What kettle do you use? \rightarrow What system is in place currently? How do you use it? \rightarrow What's the experience like? How do you like your coffee? \rightarrow What's the target? ...? What kettle do you use? \rightarrow What system is in place currently? AmazonBasics (link) How do you use it? \rightarrow What's the experience like? I use a non-contact thermometer and turn it off by hand How do you like your coffee? \rightarrow What's the target? Cream no sugar, thanks. Aeropress, 2 scoops fresh grounds, water heated <180 F LAB 2 #### **Revised POV** Alex needs an effortless and consistent way to make high quality coffee because stopping his electric kettle by hand demands too much attention. LAB 3 #### How might we... How might we create better coffee? How might we make coffee making a more consistent experience? How might we control the temperature of the water? How might we minimize effort? #### **Ideation** Come up with a bunch of ideas that might work to address the HMW questions. ### How might we create *better* coffee? - Cold brew - Optimize variables - Grind - Temp - Ratio - Time - Pressure - Flavor augmentation ## How might we control the temperature of the water - Measure temp and control heating (turn off heater) - Measure temp and control heat flux (remove from heat) - Measure temp and control mixing (add cold water) - Measure volume and control heat flux (compute temp) ## How might we make coffee making a more consistent experience? - Closed system - Automated - Control algorithms - Post-processing #### How might we minimize effort? - Automated system - Timed - Routine activated? - Load once, brew many? - Minimal maintenance - Cleaning - Repair #### Develop suitable concepts And review with users to assess your initial understanding of the problem and to inform design decisions. #### Want more SCD? Alex Pagano Senior Design Strategist apagano2@illinois.edu Sign up for our newsletter! #### Why Engineers need HCD Engineers are problem-solvers working to address human needs by: These skills are taught in Engineering courses - Increasing efficiency - Increasing productivity - Decreasing costs - Creating new opportunities through innovation **Human Centered** Design! But how do we know what problems are worth solving?